
LIGHTING USING SPHERICAL

HARMONICS
Mayuran Thurairatnam

Department of Computer Science at Hood College

INTRODUCTION
I will try to make one model for using spherical harmonics by
combing three other methods and tailoring them to my
needs for speed and ease of installment. Using these methods
I can combine them to shadow a scene with soft shadows
and cinematic like quality.

The three methods I am going to converge are as follows:

• Precomputed Radiance Transfer[2]
• Irradiance Volume[4]
• Shadow Blockers[5]

Also combining these methods I can get rid of any
redundancy and make one easy to use model to shadow all
types of objects.

MOTIVATION
One of the main differences between cinematic rendering
and real-time graphics used in games is the way they handle
light and shadows.

Soft shadows are something that can be difficult to calculate
in real-time, since one the best methods is ray casting.

Using spherical harmonics and the ever growing power of
Graphic Processing Units (GPU) in video cards, I can try to
bridge this gap.

Also, I would like to try to make the solution as easy as
possible to integrate into a game engine.

PREVIOUS WORK
SPHERICAL HARMONICS

Spherical Harmonics (SH) are represented by a set of basis
functions that I can use to approximate the amount of light
around an object. If I assume a point is a sphere I can
integrate over the sphere and make a SH vector that
represents the lighting.

HOW TO BUILD

I can build these SH vectors using the Monte Carlo Integration
[1]. This takes random samples over a sphere while taking the
product with the SH basis functions and weighing them based
on the number of samples.

PRODUCT
The product over two SH vectors is the intersection of the two
[1]. This can be used to account for visibility; one vector can
represent lighting from outside and one can be the
shadowing underneath. The product will be another SH
vector that can be used for future calculations.

eq1 from [1]

One can make a Matrix by integrating over the original

function and the two other spherical harmonics. This

FIGURE 1 SPHERICAL HARMONICS BASIS FUNCTION [IMAGE FROM

[1]]

product matrix can then be multiplied by any SH vector to
get a new vector that is the product of the two.

This is an expensive operation, and the triple product method
will be the one I use for this solution.

VISIBILITY BY INTEGRATION
To calculate the amount of light reaching a point one can
easily take the dot product of the two vectors and it will
return a visibility value. This will be like integrating over the SH
vector as follow [1]:

eq2 from [1]

 is the Light function and is the blocker function. This is

very quick, but it will give us one value that represents the
visibility. Although, it will not be a SH vector, so it can only be
used on the final visibility function.

To get another vector as a product one can use the triple
product method [1]

eq3 from [1]

First, create a three dimensional matrix that can be

used along with the two SH vectors to be multiplied and will
yield a product vector. This is fast enough that I can use it in
the GPU, but only a few times. The product matrix takes up
many of shader constants so low order SH vectors are
recommended.

Rotating SH vectors can become very complicated. The
previous way of SH vector rotation is to build a matrix for
rotation in the Z and X90 directions. Using this method one
can rotate via ZYZ rotations [1]. But this becomes slow. There
is quicker method that can be implemented to rotate the
vectors in the GPU [5].

This faster method involves storing the SH vectors for visibility
spheres of increasing radius. This data takes the form of a 1D
table that stores just a fraction of the total values, since one
can approximate the vector using only the non-zero
coefficients. Also, one must use a 2D table of the basis SH
functions in the desired direction of rotation [5].

PRECOMPUTED RADIANCE TRANSFER
Precomputed Radiance Transfer (PRT) is a method of baking
SH representations of light into a vertex or a texture. A PRT
simulator would find the lighting calculations [2]. This is the
robust, flexible method capable of taking into account high
orders and inter-reflectance.

PRT iterates over each vertex and uses the Monte Carlo
integration to build the coefficients. These values are stored
in each vertex for later use. The only con is these SH vectors
only account for what objects the rays hit during simulation.
Thus, the object must be static. Since the object is static, one
can calculate inter-reflectance of light and subsurface light
transfer.

IRRADIANCE VOLUMES
When PRT is used, there is a need for shadowing objects that
travels through these PRT static objects. These are known as
Irradiance Volumes. These volumes would store at each point
the lambertian cosine visibility [3]. These values would form a
5D function that one would index and then send the SH
vector to the GPU.

FIGURE 2 PRT LIGHTING FOR A POINT P [IMAGE FROM [DIRECTX

SDK]]

The volume does not have to be at a high density, one uses
central differencing or linear interpolation to find the SH value
at any point.

SPHERICAL BLOCKERS USING LOG SPACE

This technique is used for shadowing dynamic blockers [5].
There are a few steps in this method. First, one must
approximate a dynamic blocker with spheres. Then, one
accumulates the visibility for a point buy adding all the log
blockers together.

SPHERE APPROXIMATION
Sphere approximation is critical for correctly representing a
dynamic blocker. One would want to have the minimal
number of spheres possible, while still representing the mesh
accurately.

Normally, using methods such as an octree will yield many
spheres. The method described in Wang et.al. first scatters
spheres across a mesh’s vertices and volume [6]. They
developed a method of calculating the error that a sphere
approximation yields. They use this method to adjust from the
initial sphere positions to what position yields the lowest error.

Wang et.al. use a method of clustering to determine the
radius and position of the spheres. However, one must only
add a point to a sphere that yields the lowest error increase,
instead of just adding it to the closest sphere.

FIGURE 3 IRRADIANCE VOLUME THE SPHERES REPRESENT THE

AMOUNT OF LIGHT AT A POINT [IMAGE FROM GREGER98]

Another method for calculating sphere position and radius is
sphere teleportation. This technique is utilized when an error
increase arises after a pass, in order to keep from staying in
the local minimum. When using sphere teleportation, one
must first locate the sphere that has the highest error. In
addition, one must locate the sphere that has the highest
overlapping volume with other spheres. Finally, one must
delete that sphere and split the sphere with the highest error
into two new spheres.

These spheres are then attached to the mesh’s animation
bones.

LOG SPHERES
The reason that spheres are used in these calculations is that
they are rotationally invariant. The visibility spheres show 1
when blocked and 0 when not.

FIGURE 4 SPHERE APPROXIMATION FROM [6] SHOWS HOW MUCH

BETTER IT IS THEN OCTREES OR MEDIAL AXIS METHODS. [IMAGE

FROM [6]]

One can now iterate over all the spheres and calculate the
visibility for a point P. The problem is that taking the product of
two SH vectors is expensive, and taking the product of many
SH vectors would not be feasible. Ren et.al. present a
method that transforms the vectors into log space. Then one
can just add the vectors together. This method speeds up
blocker accumulation considerably. After the additions are
complete, one merely has to take the exponential function of
the vector, thus calculating the total blocker visibility vector.

In the following equation, the vectors are being built on the
log function of the spheres, which yield artifacts.

Eq4 from [5]

The solution proposed by Ren et.al. is to invert their SH Exp
method by taking the log of the diagonalized version of the
SH Product matrix like so:

Eq5 from [5]

FIGURE 4 SHOWS HOW MANY SPHERE BLOCKERS CAN SHADOW A

POINT P [IMAGE FROM [5]]

Eq6 from [6]

Eq7 from [7]

Using eigenanalysis on the SH product matrix (one

calculates rotation matrices and and applies eq6

to . The max in eq7 is to avoid applying log to any

numbers negative to close or 0 (.

Eigenanalysis cannot be calculated on the fly, so one should
precalulate these values and store them in a texture along
with any other functions that may be needed. One should
store the precalculated log SH vector of a sphere of
increasing radius pointing in the Z direction and then rotate in
the shader.

SOLUTION
SPHERICAL HARMONIC USE IN LIGHTING

The table here shows what methods I’ll use to shadow the
wide variety of object common to games. For a static mesh it
will use PRT for self-shadowing and Log blockers for other
static meshes. This means that all meshes will have to be
sphere approximated.

Although by the looks of the table it seems I would need the
log blockers for most shadows, they will only shadow a small
part of the scene; most of the scene should be shadowed by
PRT and irradiance volumes. The slowest solution should be
shadowing a static mesh; it needs a shader that would use all
3 methods, while others meshes only need 2.

THE MODEL
The problem is these methods require different types of
information. Some information can be factored, while other
information is unique to the method and cannot be used with
the others.

Log Blockers are the lowest denominator; they need the
lowest SH order, and only show shadowing information, no
light transfer or inter-reflectance.

One could use high order SH for PRT and Irradiance Volumes,
but this would provide a noticeable difference in shadows.
The user would be able to tell when a dynamic object is
shadowing, just like previous methods with coarse shadow
buffers and shadow maps.

TABLE1. HOW I WILL USE THE 3 DIFFERENT METHODS TO CAST

SHADOWS ON ALL 3 DIFFERENT OBJECTS

The solution is account for visibility only, as Log Blockers do,
without the lambertian cosine accounted for.

PRT
PRT has the most power of the three methods, subsurface
scattering, all three color channels, etc. Now the more of
these I include, the more contrast there will be between static
and dynamic objects. However, I do not want the user to be
able to tell what is static and what is dynamic.

Instead of doing any light transfer functions for PRT I just
calculate a visibility of a point and bake that into the vertex.

IRRADIANCE VOLUME
Irradiance Volumes are a 5d function, they provide irradiance
function for each direction. Since irradiance includes
lambertian cosine, this makes the visibility function easy to
computer in the shader. However, this solution has a few SH
products already. Therefore, I can just contain the visibility of
the point in the volume, without the irradiance. This saves a
considerable amount of space, instead of a large 5d function
I need only one SH vector. Now some may want the extra
performance gain from missing the SH product; however, if I
use this method the volume size can be much bigger, while
the data remains small enough to fit into a volume texture.
This texture can be used as a vertex lookup in the future to
provide very high detail visibility volume.

LOG BLOCKERS
To customize log blockers for our solution I will be trying to
make it easy to integrate into a game engine. Ren et.al. have
an excellent implementation using clusters and ratio vectors
to expand the range of the amount of blocker spheres that
can be represented in a scene. They use the GPU to process
all of the vertices in a scene in clusters and account for the
visibility of what sphere sets to use. This may scare some
developers away from using the solution since it would be
vertex dependent. The scene would need to be highly
tessellated and the texture would have to be adjusted as
vertices in the scene increase and decrease.

I present a solution where one uses the pixel shader to
calculate the blocker visibility directly. This puts all the work on

the pixel shader, and could be detrimental if there is already
a large workload on the pixel shader for other effects.
However, my solution retains a few advantages:

• Not vertex dependent
• Higher detail without high tessellation
• Easy to implement
• No sphere set hierarchies
• Steady speed

Even though I will have a slower speed, and can
approximate less sphere blockers, if implemented correctly I
can keep the speed consistent over a scene. This is
accomplished by doing a Z-only pass, and then when the
color write pass is done only the pixels that will be shaded are
executed. This means that no matter how many vertices are
displayed on the scene that require log blockers, the speed
would remain the same since the pixel shader is performing
the majority of the calculations. Currently I am limited to 16
sphere blockers per a pixel to perform at an acceptable
frame rate (30 Hz). Therefore, a better sphere culling
algorithm would provide better results.

Originally, I was going to use the vertex shader to cull spheres,
and send the indices of the spheres to the pixel shader.
However, the problem is that the vertex shader cannot send
integers, only the interpolated floating point numbers from
the three surrounding vertices. I hope that future API’s
(DirectX 10) will provide a solution for this.

PERFORMANCE OPTIMIZATION

There are a few performance optimizations that I can
implement. First, I could use 4 coefficients to represents SH
vectors for all methods. If one wants to provide more detail,
you can go into higher orders for other methods, but the best
solution for log blockers is 4.

I use the optimal linear approximation method for log
blockers [5]. This technique serves to help reduce the amount
of SH products I need.

I also use the faster rotation method [5]; however, instead of
using polar coordinates and converting in the GPU, my

technique uses a cubemap and the input would be the
desired direction of the SH vector.

The Z-only pass might not help significantly for our demo;
however it will make a substantial improvement in a game
where there are many objects.

RESULTS
The machine that was used was a p4 3.0 GHz with an NVidia
Geforce 6600 GT. Although the hardware is not powerful, it
would be a great ruler for measuring the loosest end of the
hardware that would use this technique in a game. A
complex scene is one where I have a dynamic object
walking around on a static object. This will use all three
methods. Also a HDR shader was introduced to show how
adding multiple shaders would affect speed of the method. A
maximum of 16 spheres could be shadowed on a point.

The results stayed steady at 20Hz, fluctuating little. Although
this slow, future hardware such as NVidia G80 or ATI RX600
GPU’s have much more powerful pixel shaders and a
scalable architecture.

FIGURE 5 DYNAMIC FIGURE WALKING INFRONT OF A STATIC BUILDING

FIGURE 6 A WARM LOCAL LIGHT SOURCE LIGHTS UP THE ROOM FROM THE INSIDE

FIGURE 7 EVEN SMOKE CAN BE REPRESENTED WITH BLOCKERS

FUTURE WORK
One of the major things I wanted to do for future work was to
cull spheres from the vertex shader, balancing the shading
pipeline is key, and could provide an excellent result. This

concept is not possible right now on current API’s and
shaders.

In addition, trying to put an irradiance volume in a volume
texture may provide better results for shadowing on objects.
Using the vertex shader one could sample the volume
texture; however, for large scenes this may prove impractical.

Higher order SH’s would greatly improve quality, and provide
nice, long, soft shadows. It would be interesting to see how far
I can take these methods on future hardware.

Finally, I would like to find a way to dynamically cast
translucent shadows. Although uses are few for this, it would
provide great realism for things like a dragon’s wings or other
organic material.

 REFERENCES

1. The Irradiance Volume. Greger, Gene, et al.

2. Green, Robin. Spherical Harmonic Lighting. s.l. : Sony
Computer Entertainment America, 2003.

3. Precomputed radiance transfer: theory and practice.
Kautz, Jan, Sloan, Peter-Pike and Lehtinen, Jaakko. s.l. : ACM
Press , 2005.

4. Irradiance Volumes for Games. Tatarchuk, Natalya. s.l. : ATI,
2005.

5. Real-Time Soft Shadows in Dynamic Scenes using
Spherehical Harmonic Exponentiation. Ren, Zhong, et al. s.l. :
ARC SIGGRAPH, 2005.

6. Variational Sphere Se tApproximation for Solid Objects.
Wang, Rui, et al. s.l. : ACM SIGGRAPH.

