Department of Computer Science & Information Technology

PROGRESS CHECKLIST

Name ____________________________ Term Entered_______ Expected Grad ______

Hood Core Curriculum and Total Credit (124) Requirements – See Hood College Catalog

Required Computer Science Courses

☐ CS 201 Computer Science I
☐ CS 202 Computer Science II
☐ CS 219 Advanced Data Structures
☐ CS 226 Computer Organization and Design
☐ CS 319 Algorithm Analysis
☐ CS 324 Principles of Software Engineering
☐ CS 329 Introduction to Database Management Systems
☐ CS 464 Operating Systems
☐ CS 471 Programming Languages
☐ CS 474 Capstone Proseminar
☐ CS 475 Senior Project
☐ CSIT 302 Impact of Computers on Society (Also meets Global Studies requirement)

☐ 9 credits of 300-level or above computer science elective courses, no more than three credits of which may be an internship or assistantship.

☐ CS ______________________________
☐ CS ______________________________
☐ CS ______________________________
Required Mathematics Courses (14 credits)

☐ MATH 112 Applied Statistics OR Math 213 Statistical Concepts and Methods (3 credits)
☐ MATH 201 Calculus I (4 credits)
☐ MATH 202 Calculus II (4 credits)
☐ MATH 207 Discrete Mathematics (3 credits)

Additional Mathematics for a minimum of 15 credits (including 14 credits for required courses). Courses should be at least 200-level and may not be computer lab workshops offered in conjunction with calculus, linear algebra, or other courses. MATH 398 Mathematics Tutorial may be used.

☐ ____________________________

☐ ____________________________

Science courses for a total of 30 credits of mathematics and science. Science courses should be selected from courses designed for science majors. Computer Science majors should be sure to take appropriate courses to meet Core Curriculum requirements. Important: non-lab science courses for the Core do NOT count for the major.

☐ ____________________________

☐ ____________________________

☐ ____________________________

☐ ____________________________

Science Courses which may be used to meet the requirement

BIOL 112 Biology of Food & Nutrition	CHEM 209 Organic Chemistry I
BIOL 113 Newsstand Biology	CHEM 215 Quantitative Analysis
BIOL 114 Biodiversity: Past Present & Future	PHYS 101 General Physics I (Non-calculus)
BIOL 117 This Course Will Bug You	PHYS 102 General Physics II (Non-calculus)
BIOL 119 Biology of Marine Organisms	PHYS 203 Introductory Physics I (Calculus-based)
BIOL 201 Evolution & Ecology	PHYS 204 Introductory Physics II (Calculus-based)
BIOL 202 Physiology of Plants & Animals	PHYS 222 Intro Modern Physics
BIOL 203 Intro to Cell Biology & Genetics	PHYS 324 Mechanics
CHEM 101 General Chemistry I	PHYS 325 Electricity & Magnetism
CHEM 102 General Chemistry II	
BSCS Course Prerequisite Structure

Foundation: CS I, CS II, Data structures, Computer Organization. These courses are Freshman/Sophomore or Sophomore level, depending on the student’s entering preparation.

Core: Mid-level courses, which may be prerequisite to advanced courses. Algorithms, Database, Software Engineering. Sophomore/Junior level.

Advanced Core: Required courses with more prerequisites. Operating systems and Programming Languages. Junior/Senior level.

Capstone: Capstone Proseminar, Senior Project. Strictly senior level. Though only database and software engineering are specifically required, most required coursework should be completed before taking these courses, not piled up concurrently.

Electives: include AI, Data Comm, Architecture, Robotics, Machine Learning, Parallel Processing, Web Programming, Digital Logic (offered infrequently), and special topics.